Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complex Laguerre Symplectic Ensemble of Non-Hermitian Matrices

We solve the complex extension of the chiral Gaussian Symplectic Ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correl...

متن کامل

Eigenvalues of Majorized Hermitian Matrices

Answering a question raised by S. Friedland, we show that the possible eigenvalues of Hermitian matrices (or compact operators) A, B, and C with C ≤ A+B are given by the same inequalities as in Klyachko’s theorem for the case where C = A + B, except that the equality corresponding to tr(C) = tr(A) + tr(B) is replaced by the inequality corresponding to tr(C) ≤ tr(A) + tr(B). The possible types o...

متن کامل

Eigenvalues of Hermitian Toeplitz matrices

The paper is concerned with finite Hermitian Toeplitz matrices whose entries in the first row grow like a polynomial. Such matrices cannot be viewed as truncations of an infinite Toeplitz matrix which is generated by an integrable function or a nice measure. The main results describe the first-order asymptotics of the extreme eigenvalues as the matrix dimension goes to infinity and also deliver...

متن کامل

Distribution of eigenvalues of ensembles of asymmetrically diluted Hopfield matrices

Using Grassmann variables and an analogy with two dimensional electrostatics, we obtain the average eigenvalue distribution ρ(ω) of ensembles of N × N asymmetrically diluted Hopfield matrices in the limit N → ∞. We found that in the limit of strong dilution the distribution is uniform in a circle in the complex plane. Present address: Universidade Federal de Braśılia, Brazil Present address: Fa...

متن کامل

Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices

We present eigenvalue bounds for perturbations of Hermitian matrices, and express the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace, rather than in terms of the full perturbation. The perturbations we consider are Hermitian of rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific eigenvalue. Applications ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Waves in Random Media

سال: 1999

ISSN: 0959-7174,1361-6676

DOI: 10.1088/0959-7174/9/2/301